Quantum discord bounds the amount of distributed entanglement.

نویسندگان

  • T K Chuan
  • J Maillard
  • K Modi
  • T Paterek
  • M Paternostro
  • M Piani
چکیده

The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of entangled quantum optical system in independent media

We study the dynamics of two three-level atoms interacting with independent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created in far astronomical objects. Quantum mechanical behaviour of these particles can produce detectable effects on the spectroscopic identifications of these objects, if such behaviour remain stable during the interaction with their media. It is ...

متن کامل

Quantum versus classical correlations in Gaussian states.

Quantum discord, a measure of genuinely quantum correlations, is generalized to continuous variable systems. For all two-mode Gaussian states, we calculate analytically the quantum discord and a related measure of classical correlations, solving an optimization over all Gaussian measurements. Almost all two-mode Gaussian states are shown to have quantum correlations, while for separable states,...

متن کامل

حفظ و مقایسه درهم‌تنیدگی، ناسازگاری و همدوسی کوانتومی بین کیوبیت‌های متحرک در کاواک‌های نشت کننده

In this study, we consider a composed system consisting of two identical non-interacting subsystems. Each sub-system is made of a moving qubit into a leaky cavity. The study of the dynamic of the composed system revealed that compared with the stationary qubits, entanglement, quantum discord and coherence between two moving qubits remained close to their initial values as time went by. In parti...

متن کامل

Non-monogamy of quantum discord and upper bounds for quantum correlation

We consider a monogamy inequality of quantum discord in a pure tripartite state and show that it is equivalent to an inequality between quantum mutual information and entanglement of formation of two parties. Since this inequality does not hold for arbitrary bipartite states, quantum discord can generally be both monogamous and polygamous. We also carry out numerical calculations for some speci...

متن کامل

Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord.

Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 109 7  شماره 

صفحات  -

تاریخ انتشار 2012